Metamath Proof Explorer


Theorem 0cxp

Description: Value of the complex power function when the first argument is zero. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion 0cxp ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 0 ↑𝑐 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 0cn 0 ∈ ℂ
2 cxpval ( ( 0 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 0 ↑𝑐 𝐴 ) = if ( 0 = 0 , if ( 𝐴 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐴 · ( log ‘ 0 ) ) ) ) )
3 1 2 mpan ( 𝐴 ∈ ℂ → ( 0 ↑𝑐 𝐴 ) = if ( 0 = 0 , if ( 𝐴 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐴 · ( log ‘ 0 ) ) ) ) )
4 eqid 0 = 0
5 4 iftruei if ( 0 = 0 , if ( 𝐴 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐴 · ( log ‘ 0 ) ) ) ) = if ( 𝐴 = 0 , 1 , 0 )
6 3 5 eqtrdi ( 𝐴 ∈ ℂ → ( 0 ↑𝑐 𝐴 ) = if ( 𝐴 = 0 , 1 , 0 ) )
7 ifnefalse ( 𝐴 ≠ 0 → if ( 𝐴 = 0 , 1 , 0 ) = 0 )
8 6 7 sylan9eq ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 0 ↑𝑐 𝐴 ) = 0 )