Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
⊢ 0 ∈ ℂ |
2 |
|
cxpval |
⊢ ( ( 0 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 0 ↑𝑐 𝐴 ) = if ( 0 = 0 , if ( 𝐴 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐴 · ( log ‘ 0 ) ) ) ) ) |
3 |
1 2
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( 0 ↑𝑐 𝐴 ) = if ( 0 = 0 , if ( 𝐴 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐴 · ( log ‘ 0 ) ) ) ) ) |
4 |
|
eqid |
⊢ 0 = 0 |
5 |
4
|
iftruei |
⊢ if ( 0 = 0 , if ( 𝐴 = 0 , 1 , 0 ) , ( exp ‘ ( 𝐴 · ( log ‘ 0 ) ) ) ) = if ( 𝐴 = 0 , 1 , 0 ) |
6 |
3 5
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( 0 ↑𝑐 𝐴 ) = if ( 𝐴 = 0 , 1 , 0 ) ) |
7 |
|
ifnefalse |
⊢ ( 𝐴 ≠ 0 → if ( 𝐴 = 0 , 1 , 0 ) = 0 ) |
8 |
6 7
|
sylan9eq |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 0 ↑𝑐 𝐴 ) = 0 ) |