Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | 0disj | ⊢ Disj 𝑥 ∈ 𝐴 ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss | ⊢ ∅ ⊆ { 𝑥 } | |
2 | 1 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐴 ∅ ⊆ { 𝑥 } |
3 | sndisj | ⊢ Disj 𝑥 ∈ 𝐴 { 𝑥 } | |
4 | disjss2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∅ ⊆ { 𝑥 } → ( Disj 𝑥 ∈ 𝐴 { 𝑥 } → Disj 𝑥 ∈ 𝐴 ∅ ) ) | |
5 | 2 3 4 | mp2 | ⊢ Disj 𝑥 ∈ 𝐴 ∅ |