Metamath Proof Explorer


Theorem 0disj

Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion 0disj Disj 𝑥𝐴

Proof

Step Hyp Ref Expression
1 0ss ∅ ⊆ { 𝑥 }
2 1 rgenw 𝑥𝐴 ∅ ⊆ { 𝑥 }
3 sndisj Disj 𝑥𝐴 { 𝑥 }
4 disjss2 ( ∀ 𝑥𝐴 ∅ ⊆ { 𝑥 } → ( Disj 𝑥𝐴 { 𝑥 } → Disj 𝑥𝐴 ∅ ) )
5 2 3 4 mp2 Disj 𝑥𝐴