Metamath Proof Explorer


Theorem 0domg

Description: Any set dominates the empty set. (Contributed by NM, 26-Oct-2003) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion 0domg ( 𝐴𝑉 → ∅ ≼ 𝐴 )

Proof

Step Hyp Ref Expression
1 0ss ∅ ⊆ 𝐴
2 ssdomg ( 𝐴𝑉 → ( ∅ ⊆ 𝐴 → ∅ ≼ 𝐴 ) )
3 1 2 mpi ( 𝐴𝑉 → ∅ ≼ 𝐴 )