| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0z |
⊢ 0 ∈ ℤ |
| 2 |
|
divides |
⊢ ( ( 0 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 0 ) = 𝑁 ) ) |
| 3 |
1 2
|
mpan |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 0 ) = 𝑁 ) ) |
| 4 |
|
zcn |
⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℂ ) |
| 5 |
4
|
mul01d |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 · 0 ) = 0 ) |
| 6 |
|
eqtr2 |
⊢ ( ( ( 𝑛 · 0 ) = 𝑁 ∧ ( 𝑛 · 0 ) = 0 ) → 𝑁 = 0 ) |
| 7 |
5 6
|
sylan2 |
⊢ ( ( ( 𝑛 · 0 ) = 𝑁 ∧ 𝑛 ∈ ℤ ) → 𝑁 = 0 ) |
| 8 |
7
|
ancoms |
⊢ ( ( 𝑛 ∈ ℤ ∧ ( 𝑛 · 0 ) = 𝑁 ) → 𝑁 = 0 ) |
| 9 |
8
|
rexlimiva |
⊢ ( ∃ 𝑛 ∈ ℤ ( 𝑛 · 0 ) = 𝑁 → 𝑁 = 0 ) |
| 10 |
3 9
|
biimtrdi |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 → 𝑁 = 0 ) ) |
| 11 |
|
dvds0 |
⊢ ( 0 ∈ ℤ → 0 ∥ 0 ) |
| 12 |
1 11
|
ax-mp |
⊢ 0 ∥ 0 |
| 13 |
|
breq2 |
⊢ ( 𝑁 = 0 → ( 0 ∥ 𝑁 ↔ 0 ∥ 0 ) ) |
| 14 |
12 13
|
mpbiri |
⊢ ( 𝑁 = 0 → 0 ∥ 𝑁 ) |
| 15 |
10 14
|
impbid1 |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) |