Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) |
2 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → ( iEdg ‘ 𝐺 ) = ∅ ) |
3 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
5 |
3 4
|
vtxdg0e |
⊢ ( ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ) |
6 |
1 2 5
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ) |
7 |
6
|
ralrimiva |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ) |
8 |
|
0xnn0 |
⊢ 0 ∈ ℕ0* |
9 |
7 8
|
jctil |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ( 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ) ) |
10 |
8
|
a1i |
⊢ ( ( iEdg ‘ 𝐺 ) = ∅ → 0 ∈ ℕ0* ) |
11 |
|
eqid |
⊢ ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 ) |
12 |
3 11
|
isrgr |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 0 ∈ ℕ0* ) → ( 𝐺 RegGraph 0 ↔ ( 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ) ) ) |
13 |
10 12
|
sylan2 |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ( 𝐺 RegGraph 0 ↔ ( 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ) ) ) |
14 |
9 13
|
mpbird |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 RegGraph 0 ) |