Metamath Proof Explorer


Theorem 0edg0rgr

Description: A graph is 0-regular if it has no edges. (Contributed by Alexander van der Vekens, 8-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Assertion 0edg0rgr ( ( 𝐺𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 RegGraph 0 )

Proof

Step Hyp Ref Expression
1 simpr ( ( ( 𝐺𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑣 ∈ ( Vtx ‘ 𝐺 ) )
2 simplr ( ( ( 𝐺𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → ( iEdg ‘ 𝐺 ) = ∅ )
3 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
4 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
5 3 4 vtxdg0e ( ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 )
6 1 2 5 syl2anc ( ( ( 𝐺𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 )
7 6 ralrimiva ( ( 𝐺𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 )
8 0xnn0 0 ∈ ℕ0*
9 7 8 jctil ( ( 𝐺𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ( 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ) )
10 8 a1i ( ( iEdg ‘ 𝐺 ) = ∅ → 0 ∈ ℕ0* )
11 eqid ( VtxDeg ‘ 𝐺 ) = ( VtxDeg ‘ 𝐺 )
12 3 11 isrgr ( ( 𝐺𝑊 ∧ 0 ∈ ℕ0* ) → ( 𝐺 RegGraph 0 ↔ ( 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ) ) )
13 10 12 sylan2 ( ( 𝐺𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ( 𝐺 RegGraph 0 ↔ ( 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = 0 ) ) )
14 9 13 mpbird ( ( 𝐺𝑊 ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 RegGraph 0 )