Metamath Proof Explorer


Theorem 0el

Description: Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004)

Ref Expression
Assertion 0el ( ∅ ∈ 𝐴 ↔ ∃ 𝑥𝐴𝑦 ¬ 𝑦𝑥 )

Proof

Step Hyp Ref Expression
1 risset ( ∅ ∈ 𝐴 ↔ ∃ 𝑥𝐴 𝑥 = ∅ )
2 eq0 ( 𝑥 = ∅ ↔ ∀ 𝑦 ¬ 𝑦𝑥 )
3 2 rexbii ( ∃ 𝑥𝐴 𝑥 = ∅ ↔ ∃ 𝑥𝐴𝑦 ¬ 𝑦𝑥 )
4 1 3 bitri ( ∅ ∈ 𝐴 ↔ ∃ 𝑥𝐴𝑦 ¬ 𝑦𝑥 )