Metamath Proof Explorer


Theorem 0elixp

Description: Membership of the empty set in an infinite Cartesian product. (Contributed by Steve Rodriguez, 29-Sep-2006)

Ref Expression
Assertion 0elixp ∅ ∈ X 𝑥 ∈ ∅ 𝐴

Proof

Step Hyp Ref Expression
1 0ex ∅ ∈ V
2 1 snid ∅ ∈ { ∅ }
3 ixp0x X 𝑥 ∈ ∅ 𝐴 = { ∅ }
4 2 3 eleqtrri ∅ ∈ X 𝑥 ∈ ∅ 𝐴