Metamath Proof Explorer


Theorem 0ellim

Description: A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994)

Ref Expression
Assertion 0ellim ( Lim 𝐴 → ∅ ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 nlim0 ¬ Lim ∅
2 limeq ( 𝐴 = ∅ → ( Lim 𝐴 ↔ Lim ∅ ) )
3 1 2 mtbiri ( 𝐴 = ∅ → ¬ Lim 𝐴 )
4 3 necon2ai ( Lim 𝐴𝐴 ≠ ∅ )
5 limord ( Lim 𝐴 → Ord 𝐴 )
6 ord0eln0 ( Ord 𝐴 → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )
7 5 6 syl ( Lim 𝐴 → ( ∅ ∈ 𝐴𝐴 ≠ ∅ ) )
8 4 7 mpbird ( Lim 𝐴 → ∅ ∈ 𝐴 )