Metamath Proof Explorer


Theorem 0ellim

Description: A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994)

Ref Expression
Assertion 0ellim ( Lim 𝐴 → ∅ ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 dflim2 ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴 ) )
2 1 simp2bi ( Lim 𝐴 → ∅ ∈ 𝐴 )