Description: A limit ordinal contains the empty set. (Contributed by NM, 15-May-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | 0ellim | ⊢ ( Lim 𝐴 → ∅ ∈ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nlim0 | ⊢ ¬ Lim ∅ | |
2 | limeq | ⊢ ( 𝐴 = ∅ → ( Lim 𝐴 ↔ Lim ∅ ) ) | |
3 | 1 2 | mtbiri | ⊢ ( 𝐴 = ∅ → ¬ Lim 𝐴 ) |
4 | 3 | necon2ai | ⊢ ( Lim 𝐴 → 𝐴 ≠ ∅ ) |
5 | limord | ⊢ ( Lim 𝐴 → Ord 𝐴 ) | |
6 | ord0eln0 | ⊢ ( Ord 𝐴 → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
7 | 5 6 | syl | ⊢ ( Lim 𝐴 → ( ∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
8 | 4 7 | mpbird | ⊢ ( Lim 𝐴 → ∅ ∈ 𝐴 ) |