Metamath Proof Explorer


Theorem 0elpw

Description: Every power class contains the empty set. (Contributed by NM, 25-Oct-2007)

Ref Expression
Assertion 0elpw ∅ ∈ 𝒫 𝐴

Proof

Step Hyp Ref Expression
1 0ss ∅ ⊆ 𝐴
2 0ex ∅ ∈ V
3 2 elpw ( ∅ ∈ 𝒫 𝐴 ↔ ∅ ⊆ 𝐴 )
4 1 3 mpbir ∅ ∈ 𝒫 𝐴