Metamath Proof Explorer


Theorem 0elright

Description: Zero is in the right set of any negative number. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses 0elright.1 ( 𝜑𝐴 No )
0elright.2 ( 𝜑𝐴 <s 0s )
Assertion 0elright ( 𝜑 → 0s ∈ ( R ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 0elright.1 ( 𝜑𝐴 No )
2 0elright.2 ( 𝜑𝐴 <s 0s )
3 sltne ( ( 𝐴 No 𝐴 <s 0s ) → 0s𝐴 )
4 1 2 3 syl2anc ( 𝜑 → 0s𝐴 )
5 4 necomd ( 𝜑𝐴 ≠ 0s )
6 1 5 0elold ( 𝜑 → 0s ∈ ( O ‘ ( bday 𝐴 ) ) )
7 breq2 ( 𝑥 = 0s → ( 𝐴 <s 𝑥𝐴 <s 0s ) )
8 rightval ( R ‘ 𝐴 ) = { 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝐴 <s 𝑥 }
9 7 8 elrab2 ( 0s ∈ ( R ‘ 𝐴 ) ↔ ( 0s ∈ ( O ‘ ( bday 𝐴 ) ) ∧ 𝐴 <s 0s ) )
10 6 2 9 sylanbrc ( 𝜑 → 0s ∈ ( R ‘ 𝐴 ) )