Metamath Proof Explorer
Description: The successor of an ordinal class contains the empty set. (Contributed by NM, 4-Apr-1995)
|
|
Ref |
Expression |
|
Assertion |
0elsuc |
⊢ ( Ord 𝐴 → ∅ ∈ suc 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ordsuc |
⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) |
2 |
|
nsuceq0 |
⊢ suc 𝐴 ≠ ∅ |
3 |
|
ord0eln0 |
⊢ ( Ord suc 𝐴 → ( ∅ ∈ suc 𝐴 ↔ suc 𝐴 ≠ ∅ ) ) |
4 |
2 3
|
mpbiri |
⊢ ( Ord suc 𝐴 → ∅ ∈ suc 𝐴 ) |
5 |
1 4
|
sylbi |
⊢ ( Ord 𝐴 → ∅ ∈ suc 𝐴 ) |