Metamath Proof Explorer


Theorem 0elunit

Description: Zero is an element of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013)

Ref Expression
Assertion 0elunit 0 ∈ ( 0 [,] 1 )

Proof

Step Hyp Ref Expression
1 0re 0 ∈ ℝ
2 0le0 0 ≤ 0
3 0le1 0 ≤ 1
4 elicc01 ( 0 ∈ ( 0 [,] 1 ) ↔ ( 0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ 1 ) )
5 1 2 3 4 mpbir3an 0 ∈ ( 0 [,] 1 )