Step |
Hyp |
Ref |
Expression |
1 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
2 |
|
wwlksn |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 WWalksN 𝐺 ) = { 𝑤 ∈ ( WWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) } ) |
3 |
1 2
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 WWalksN 𝐺 ) = { 𝑤 ∈ ( WWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) } ) |
4 |
3
|
adantl |
⊢ ( ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 WWalksN 𝐺 ) = { 𝑤 ∈ ( WWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) } ) |
5 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
6 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
7 |
5 6
|
iswwlks |
⊢ ( 𝑤 ∈ ( WWalks ‘ 𝐺 ) ↔ ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
8 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
9 |
|
pncan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
10 |
8 9
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
11 |
|
id |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) |
12 |
10 11
|
eqeltrd |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) − 1 ) ∈ ℕ ) |
13 |
12
|
adantl |
⊢ ( ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 + 1 ) − 1 ) ∈ ℕ ) |
14 |
13
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ∧ ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) ) → ( ( 𝑁 + 1 ) − 1 ) ∈ ℕ ) |
15 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) → ( ( ♯ ‘ 𝑤 ) − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) |
16 |
15
|
eleq1d |
⊢ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) → ( ( ( ♯ ‘ 𝑤 ) − 1 ) ∈ ℕ ↔ ( ( 𝑁 + 1 ) − 1 ) ∈ ℕ ) ) |
17 |
16
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ∧ ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) ) → ( ( ( ♯ ‘ 𝑤 ) − 1 ) ∈ ℕ ↔ ( ( 𝑁 + 1 ) − 1 ) ∈ ℕ ) ) |
18 |
14 17
|
mpbird |
⊢ ( ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ∧ ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) ) → ( ( ♯ ‘ 𝑤 ) − 1 ) ∈ ℕ ) |
19 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ↔ ( ( ♯ ‘ 𝑤 ) − 1 ) ∈ ℕ ) |
20 |
18 19
|
sylibr |
⊢ ( ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ∧ ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) ) → 0 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑤 ‘ 𝑖 ) = ( 𝑤 ‘ 0 ) ) |
22 |
|
fv0p1e1 |
⊢ ( 𝑖 = 0 → ( 𝑤 ‘ ( 𝑖 + 1 ) ) = ( 𝑤 ‘ 1 ) ) |
23 |
21 22
|
preq12d |
⊢ ( 𝑖 = 0 → { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ) |
24 |
23
|
eleq1d |
⊢ ( 𝑖 = 0 → ( { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
25 |
24
|
adantl |
⊢ ( ( ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ∧ ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) ) ∧ 𝑖 = 0 ) → ( { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
26 |
20 25
|
rspcdv |
⊢ ( ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ∧ ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
27 |
|
eleq2 |
⊢ ( ( Edg ‘ 𝐺 ) = ∅ → ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ∅ ) ) |
28 |
|
noel |
⊢ ¬ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ∅ |
29 |
28
|
pm2.21i |
⊢ ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ∅ → ¬ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) |
30 |
27 29
|
syl6bi |
⊢ ( ( Edg ‘ 𝐺 ) = ∅ → ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) → ¬ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ) |
31 |
30
|
adantr |
⊢ ( ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) → ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) → ¬ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ) |
32 |
31
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ∧ ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) ) → ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) → ¬ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ) |
33 |
26 32
|
syldc |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ∧ ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) ) → ¬ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ) |
34 |
33
|
3ad2ant3 |
⊢ ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ∧ ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) ) → ¬ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ) |
35 |
34
|
com12 |
⊢ ( ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ∧ ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) ) → ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) → ¬ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ) |
36 |
7 35
|
syl5bi |
⊢ ( ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ∧ ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) ) → ( 𝑤 ∈ ( WWalks ‘ 𝐺 ) → ¬ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ) |
37 |
36
|
expimpd |
⊢ ( ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) → ( ( ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) ∧ 𝑤 ∈ ( WWalks ‘ 𝐺 ) ) → ¬ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ) |
38 |
|
ax-1 |
⊢ ( ¬ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) → ( ( ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) ∧ 𝑤 ∈ ( WWalks ‘ 𝐺 ) ) → ¬ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) ) |
39 |
37 38
|
pm2.61i |
⊢ ( ( ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) ∧ 𝑤 ∈ ( WWalks ‘ 𝐺 ) ) → ¬ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) |
40 |
39
|
ralrimiva |
⊢ ( ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) → ∀ 𝑤 ∈ ( WWalks ‘ 𝐺 ) ¬ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) |
41 |
|
rabeq0 |
⊢ ( { 𝑤 ∈ ( WWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) } = ∅ ↔ ∀ 𝑤 ∈ ( WWalks ‘ 𝐺 ) ¬ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) ) |
42 |
40 41
|
sylibr |
⊢ ( ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) → { 𝑤 ∈ ( WWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = ( 𝑁 + 1 ) } = ∅ ) |
43 |
4 42
|
eqtrd |
⊢ ( ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 WWalksN 𝐺 ) = ∅ ) |