Metamath Proof Explorer


Theorem 0er

Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015) (Proof shortened by AV, 1-May-2021)

Ref Expression
Assertion 0er ∅ Er ∅

Proof

Step Hyp Ref Expression
1 rel0 Rel ∅
2 df-br ( 𝑥𝑦 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ ∅ )
3 noel ¬ ⟨ 𝑥 , 𝑦 ⟩ ∈ ∅
4 3 pm2.21i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ∅ → 𝑦𝑥 )
5 2 4 sylbi ( 𝑥𝑦𝑦𝑥 )
6 3 pm2.21i ( ⟨ 𝑥 , 𝑦 ⟩ ∈ ∅ → 𝑥𝑧 )
7 2 6 sylbi ( 𝑥𝑦𝑥𝑧 )
8 7 adantr ( ( 𝑥𝑦𝑦𝑧 ) → 𝑥𝑧 )
9 noel ¬ 𝑥 ∈ ∅
10 noel ¬ ⟨ 𝑥 , 𝑥 ⟩ ∈ ∅
11 9 10 2false ( 𝑥 ∈ ∅ ↔ ⟨ 𝑥 , 𝑥 ⟩ ∈ ∅ )
12 df-br ( 𝑥𝑥 ↔ ⟨ 𝑥 , 𝑥 ⟩ ∈ ∅ )
13 11 12 bitr4i ( 𝑥 ∈ ∅ ↔ 𝑥𝑥 )
14 1 5 8 13 iseri ∅ Er ∅