Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015) (Proof shortened by AV, 1-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | 0er | ⊢ ∅ Er ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rel0 | ⊢ Rel ∅ | |
2 | df-br | ⊢ ( 𝑥 ∅ 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ∅ ) | |
3 | noel | ⊢ ¬ 〈 𝑥 , 𝑦 〉 ∈ ∅ | |
4 | 3 | pm2.21i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∅ → 𝑦 ∅ 𝑥 ) |
5 | 2 4 | sylbi | ⊢ ( 𝑥 ∅ 𝑦 → 𝑦 ∅ 𝑥 ) |
6 | 3 | pm2.21i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∅ → 𝑥 ∅ 𝑧 ) |
7 | 2 6 | sylbi | ⊢ ( 𝑥 ∅ 𝑦 → 𝑥 ∅ 𝑧 ) |
8 | 7 | adantr | ⊢ ( ( 𝑥 ∅ 𝑦 ∧ 𝑦 ∅ 𝑧 ) → 𝑥 ∅ 𝑧 ) |
9 | noel | ⊢ ¬ 𝑥 ∈ ∅ | |
10 | noel | ⊢ ¬ 〈 𝑥 , 𝑥 〉 ∈ ∅ | |
11 | 9 10 | 2false | ⊢ ( 𝑥 ∈ ∅ ↔ 〈 𝑥 , 𝑥 〉 ∈ ∅ ) |
12 | df-br | ⊢ ( 𝑥 ∅ 𝑥 ↔ 〈 𝑥 , 𝑥 〉 ∈ ∅ ) | |
13 | 11 12 | bitr4i | ⊢ ( 𝑥 ∈ ∅ ↔ 𝑥 ∅ 𝑥 ) |
14 | 1 5 8 13 | iseri | ⊢ ∅ Er ∅ |