Metamath Proof Explorer


Theorem 0ex

Description: The Null Set Axiom of ZF set theory: the empty set exists. Corollary 5.16 of TakeutiZaring p. 20. For the unabbreviated version, see ax-nul . (Contributed by NM, 21-Jun-1993) (Proof shortened by Andrew Salmon, 9-Jul-2011)

Ref Expression
Assertion 0ex ∅ ∈ V

Proof

Step Hyp Ref Expression
1 ax-nul 𝑥𝑦 ¬ 𝑦𝑥
2 eq0 ( 𝑥 = ∅ ↔ ∀ 𝑦 ¬ 𝑦𝑥 )
3 2 exbii ( ∃ 𝑥 𝑥 = ∅ ↔ ∃ 𝑥𝑦 ¬ 𝑦𝑥 )
4 1 3 mpbir 𝑥 𝑥 = ∅
5 4 issetri ∅ ∈ V