Metamath Proof Explorer


Theorem 0exp

Description: Value of zero raised to a positive integer power. (Contributed by NM, 19-Aug-2004)

Ref Expression
Assertion 0exp ( 𝑁 ∈ ℕ → ( 0 ↑ 𝑁 ) = 0 )

Proof

Step Hyp Ref Expression
1 eqid 0 = 0
2 0cn 0 ∈ ℂ
3 expeq0 ( ( 0 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( 0 ↑ 𝑁 ) = 0 ↔ 0 = 0 ) )
4 2 3 mpan ( 𝑁 ∈ ℕ → ( ( 0 ↑ 𝑁 ) = 0 ↔ 0 = 0 ) )
5 1 4 mpbiri ( 𝑁 ∈ ℕ → ( 0 ↑ 𝑁 ) = 0 )