Metamath Proof Explorer
Theorem 0fi
Description: The empty set is finite. (Contributed by FL, 14-Jul-2008) Avoid
ax-10 , ax-un . (Revised by BTernaryTau, 13-Jan-2025)
|
|
Ref |
Expression |
|
Assertion |
0fi |
⊢ ∅ ∈ Fin |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano1 |
⊢ ∅ ∈ ω |
| 2 |
|
eqid |
⊢ ∅ = ∅ |
| 3 |
|
en0 |
⊢ ( ∅ ≈ ∅ ↔ ∅ = ∅ ) |
| 4 |
2 3
|
mpbir |
⊢ ∅ ≈ ∅ |
| 5 |
|
breq2 |
⊢ ( 𝑥 = ∅ → ( ∅ ≈ 𝑥 ↔ ∅ ≈ ∅ ) ) |
| 6 |
5
|
rspcev |
⊢ ( ( ∅ ∈ ω ∧ ∅ ≈ ∅ ) → ∃ 𝑥 ∈ ω ∅ ≈ 𝑥 ) |
| 7 |
1 4 6
|
mp2an |
⊢ ∃ 𝑥 ∈ ω ∅ ≈ 𝑥 |
| 8 |
|
isfi |
⊢ ( ∅ ∈ Fin ↔ ∃ 𝑥 ∈ ω ∅ ≈ 𝑥 ) |
| 9 |
7 8
|
mpbir |
⊢ ∅ ∈ Fin |