Metamath Proof Explorer


Theorem 0fi

Description: The empty set is finite. (Contributed by FL, 14-Jul-2008) Avoid ax-10 , ax-un . (Revised by BTernaryTau, 13-Jan-2025)

Ref Expression
Assertion 0fi ∅ ∈ Fin

Proof

Step Hyp Ref Expression
1 peano1 ∅ ∈ ω
2 eqid ∅ = ∅
3 en0 ( ∅ ≈ ∅ ↔ ∅ = ∅ )
4 2 3 mpbir ∅ ≈ ∅
5 breq2 ( 𝑥 = ∅ → ( ∅ ≈ 𝑥 ↔ ∅ ≈ ∅ ) )
6 5 rspcev ( ( ∅ ∈ ω ∧ ∅ ≈ ∅ ) → ∃ 𝑥 ∈ ω ∅ ≈ 𝑥 )
7 1 4 6 mp2an 𝑥 ∈ ω ∅ ≈ 𝑥
8 isfi ( ∅ ∈ Fin ↔ ∃ 𝑥 ∈ ω ∅ ≈ 𝑥 )
9 7 8 mpbir ∅ ∈ Fin