Metamath Proof Explorer


Theorem 0fv

Description: Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014)

Ref Expression
Assertion 0fv ( ∅ ‘ 𝐴 ) = ∅

Proof

Step Hyp Ref Expression
1 noel ¬ 𝐴 ∈ ∅
2 dm0 dom ∅ = ∅
3 2 eleq2i ( 𝐴 ∈ dom ∅ ↔ 𝐴 ∈ ∅ )
4 1 3 mtbir ¬ 𝐴 ∈ dom ∅
5 ndmfv ( ¬ 𝐴 ∈ dom ∅ → ( ∅ ‘ 𝐴 ) = ∅ )
6 4 5 ax-mp ( ∅ ‘ 𝐴 ) = ∅