| Step |
Hyp |
Ref |
Expression |
| 1 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
| 2 |
|
eqid |
⊢ ( +g ‘ ∅ ) = ( +g ‘ ∅ ) |
| 3 |
|
eqid |
⊢ ( 0g ‘ ∅ ) = ( 0g ‘ ∅ ) |
| 4 |
1 2 3
|
grpidval |
⊢ ( 0g ‘ ∅ ) = ( ℩ 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) ) |
| 5 |
|
noel |
⊢ ¬ 𝑒 ∈ ∅ |
| 6 |
5
|
intnanr |
⊢ ¬ ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) |
| 7 |
6
|
nex |
⊢ ¬ ∃ 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) |
| 8 |
|
euex |
⊢ ( ∃! 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) → ∃ 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) ) |
| 9 |
7 8
|
mto |
⊢ ¬ ∃! 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) |
| 10 |
|
iotanul |
⊢ ( ¬ ∃! 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) → ( ℩ 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) ) = ∅ ) |
| 11 |
9 10
|
ax-mp |
⊢ ( ℩ 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) ) = ∅ |
| 12 |
4 11
|
eqtr2i |
⊢ ∅ = ( 0g ‘ ∅ ) |