Step |
Hyp |
Ref |
Expression |
1 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
2 |
|
eqid |
⊢ ( +g ‘ ∅ ) = ( +g ‘ ∅ ) |
3 |
|
eqid |
⊢ ( 0g ‘ ∅ ) = ( 0g ‘ ∅ ) |
4 |
1 2 3
|
grpidval |
⊢ ( 0g ‘ ∅ ) = ( ℩ 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) ) |
5 |
|
noel |
⊢ ¬ 𝑒 ∈ ∅ |
6 |
5
|
intnanr |
⊢ ¬ ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) |
7 |
6
|
nex |
⊢ ¬ ∃ 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) |
8 |
|
euex |
⊢ ( ∃! 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) → ∃ 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) ) |
9 |
7 8
|
mto |
⊢ ¬ ∃! 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) |
10 |
|
iotanul |
⊢ ( ¬ ∃! 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) → ( ℩ 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) ) = ∅ ) |
11 |
9 10
|
ax-mp |
⊢ ( ℩ 𝑒 ( 𝑒 ∈ ∅ ∧ ∀ 𝑥 ∈ ∅ ( ( 𝑒 ( +g ‘ ∅ ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g ‘ ∅ ) 𝑒 ) = 𝑥 ) ) ) = ∅ |
12 |
4 11
|
eqtr2i |
⊢ ∅ = ( 0g ‘ ∅ ) |