| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							0ss | 
							⊢ ∅  ⊆  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							dm0 | 
							⊢ dom  ∅  =  ∅  | 
						
						
							| 3 | 
							
								2
							 | 
							reseq2i | 
							⊢ ( ( iEdg ‘ 𝐺 )  ↾  dom  ∅ )  =  ( ( iEdg ‘ 𝐺 )  ↾  ∅ )  | 
						
						
							| 4 | 
							
								
							 | 
							res0 | 
							⊢ ( ( iEdg ‘ 𝐺 )  ↾  ∅ )  =  ∅  | 
						
						
							| 5 | 
							
								3 4
							 | 
							eqtr2i | 
							⊢ ∅  =  ( ( iEdg ‘ 𝐺 )  ↾  dom  ∅ )  | 
						
						
							| 6 | 
							
								
							 | 
							0ss | 
							⊢ ∅  ⊆  𝒫  ∅  | 
						
						
							| 7 | 
							
								1 5 6
							 | 
							3pm3.2i | 
							⊢ ( ∅  ⊆  ( Vtx ‘ 𝐺 )  ∧  ∅  =  ( ( iEdg ‘ 𝐺 )  ↾  dom  ∅ )  ∧  ∅  ⊆  𝒫  ∅ )  | 
						
						
							| 8 | 
							
								
							 | 
							0ex | 
							⊢ ∅  ∈  V  | 
						
						
							| 9 | 
							
								
							 | 
							vtxval0 | 
							⊢ ( Vtx ‘ ∅ )  =  ∅  | 
						
						
							| 10 | 
							
								9
							 | 
							eqcomi | 
							⊢ ∅  =  ( Vtx ‘ ∅ )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 12 | 
							
								
							 | 
							iedgval0 | 
							⊢ ( iEdg ‘ ∅ )  =  ∅  | 
						
						
							| 13 | 
							
								12
							 | 
							eqcomi | 
							⊢ ∅  =  ( iEdg ‘ ∅ )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 )  | 
						
						
							| 15 | 
							
								
							 | 
							edgval | 
							⊢ ( Edg ‘ ∅ )  =  ran  ( iEdg ‘ ∅ )  | 
						
						
							| 16 | 
							
								12
							 | 
							rneqi | 
							⊢ ran  ( iEdg ‘ ∅ )  =  ran  ∅  | 
						
						
							| 17 | 
							
								
							 | 
							rn0 | 
							⊢ ran  ∅  =  ∅  | 
						
						
							| 18 | 
							
								15 16 17
							 | 
							3eqtrri | 
							⊢ ∅  =  ( Edg ‘ ∅ )  | 
						
						
							| 19 | 
							
								10 11 13 14 18
							 | 
							issubgr | 
							⊢ ( ( 𝐺  ∈  𝑊  ∧  ∅  ∈  V )  →  ( ∅  SubGraph  𝐺  ↔  ( ∅  ⊆  ( Vtx ‘ 𝐺 )  ∧  ∅  =  ( ( iEdg ‘ 𝐺 )  ↾  dom  ∅ )  ∧  ∅  ⊆  𝒫  ∅ ) ) )  | 
						
						
							| 20 | 
							
								8 19
							 | 
							mpan2 | 
							⊢ ( 𝐺  ∈  𝑊  →  ( ∅  SubGraph  𝐺  ↔  ( ∅  ⊆  ( Vtx ‘ 𝐺 )  ∧  ∅  =  ( ( iEdg ‘ 𝐺 )  ↾  dom  ∅ )  ∧  ∅  ⊆  𝒫  ∅ ) ) )  | 
						
						
							| 21 | 
							
								7 20
							 | 
							mpbiri | 
							⊢ ( 𝐺  ∈  𝑊  →  ∅  SubGraph  𝐺 )  |