| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ramval.c |
⊢ 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) |
| 2 |
|
0fi |
⊢ ∅ ∈ Fin |
| 3 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 4 |
1
|
hashbc2 |
⊢ ( ( ∅ ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( ∅ 𝐶 𝑁 ) ) = ( ( ♯ ‘ ∅ ) C 𝑁 ) ) |
| 5 |
2 3 4
|
sylancr |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ ( ∅ 𝐶 𝑁 ) ) = ( ( ♯ ‘ ∅ ) C 𝑁 ) ) |
| 6 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 7 |
6
|
oveq1i |
⊢ ( ( ♯ ‘ ∅ ) C 𝑁 ) = ( 0 C 𝑁 ) |
| 8 |
|
bc0k |
⊢ ( 𝑁 ∈ ℕ → ( 0 C 𝑁 ) = 0 ) |
| 9 |
7 8
|
eqtrid |
⊢ ( 𝑁 ∈ ℕ → ( ( ♯ ‘ ∅ ) C 𝑁 ) = 0 ) |
| 10 |
5 9
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ♯ ‘ ( ∅ 𝐶 𝑁 ) ) = 0 ) |
| 11 |
|
ovex |
⊢ ( ∅ 𝐶 𝑁 ) ∈ V |
| 12 |
|
hasheq0 |
⊢ ( ( ∅ 𝐶 𝑁 ) ∈ V → ( ( ♯ ‘ ( ∅ 𝐶 𝑁 ) ) = 0 ↔ ( ∅ 𝐶 𝑁 ) = ∅ ) ) |
| 13 |
11 12
|
ax-mp |
⊢ ( ( ♯ ‘ ( ∅ 𝐶 𝑁 ) ) = 0 ↔ ( ∅ 𝐶 𝑁 ) = ∅ ) |
| 14 |
10 13
|
sylib |
⊢ ( 𝑁 ∈ ℕ → ( ∅ 𝐶 𝑁 ) = ∅ ) |