Metamath Proof Explorer


Theorem 0hashbc

Description: There are no subsets of the empty set with size greater than zero. (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Hypothesis ramval.c 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } )
Assertion 0hashbc ( 𝑁 ∈ ℕ → ( ∅ 𝐶 𝑁 ) = ∅ )

Proof

Step Hyp Ref Expression
1 ramval.c 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } )
2 0fin ∅ ∈ Fin
3 nnnn0 ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 )
4 1 hashbc2 ( ( ∅ ∈ Fin ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( ∅ 𝐶 𝑁 ) ) = ( ( ♯ ‘ ∅ ) C 𝑁 ) )
5 2 3 4 sylancr ( 𝑁 ∈ ℕ → ( ♯ ‘ ( ∅ 𝐶 𝑁 ) ) = ( ( ♯ ‘ ∅ ) C 𝑁 ) )
6 hash0 ( ♯ ‘ ∅ ) = 0
7 6 oveq1i ( ( ♯ ‘ ∅ ) C 𝑁 ) = ( 0 C 𝑁 )
8 bc0k ( 𝑁 ∈ ℕ → ( 0 C 𝑁 ) = 0 )
9 7 8 eqtrid ( 𝑁 ∈ ℕ → ( ( ♯ ‘ ∅ ) C 𝑁 ) = 0 )
10 5 9 eqtrd ( 𝑁 ∈ ℕ → ( ♯ ‘ ( ∅ 𝐶 𝑁 ) ) = 0 )
11 ovex ( ∅ 𝐶 𝑁 ) ∈ V
12 hasheq0 ( ( ∅ 𝐶 𝑁 ) ∈ V → ( ( ♯ ‘ ( ∅ 𝐶 𝑁 ) ) = 0 ↔ ( ∅ 𝐶 𝑁 ) = ∅ ) )
13 11 12 ax-mp ( ( ♯ ‘ ( ∅ 𝐶 𝑁 ) ) = 0 ↔ ( ∅ 𝐶 𝑁 ) = ∅ )
14 10 13 sylib ( 𝑁 ∈ ℕ → ( ∅ 𝐶 𝑁 ) = ∅ )