Metamath Proof Explorer


Theorem 0hmop

Description: The identically zero function is a Hermitian operator. (Contributed by NM, 8-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion 0hmop 0hop ∈ HrmOp

Proof

Step Hyp Ref Expression
1 ho0f 0hop : ℋ ⟶ ℋ
2 ho0val ( 𝑦 ∈ ℋ → ( 0hop𝑦 ) = 0 )
3 2 oveq2d ( 𝑦 ∈ ℋ → ( 𝑥 ·ih ( 0hop𝑦 ) ) = ( 𝑥 ·ih 0 ) )
4 hi02 ( 𝑥 ∈ ℋ → ( 𝑥 ·ih 0 ) = 0 )
5 3 4 sylan9eqr ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 0hop𝑦 ) ) = 0 )
6 ho0val ( 𝑥 ∈ ℋ → ( 0hop𝑥 ) = 0 )
7 6 oveq1d ( 𝑥 ∈ ℋ → ( ( 0hop𝑥 ) ·ih 𝑦 ) = ( 0 ·ih 𝑦 ) )
8 hi01 ( 𝑦 ∈ ℋ → ( 0 ·ih 𝑦 ) = 0 )
9 7 8 sylan9eq ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 0hop𝑥 ) ·ih 𝑦 ) = 0 )
10 5 9 eqtr4d ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 0hop𝑦 ) ) = ( ( 0hop𝑥 ) ·ih 𝑦 ) )
11 10 rgen2 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 0hop𝑦 ) ) = ( ( 0hop𝑥 ) ·ih 𝑦 )
12 elhmop ( 0hop ∈ HrmOp ↔ ( 0hop : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 0hop𝑦 ) ) = ( ( 0hop𝑥 ) ·ih 𝑦 ) ) )
13 1 11 12 mpbir2an 0hop ∈ HrmOp