Step |
Hyp |
Ref |
Expression |
1 |
|
ho0f |
⊢ 0hop : ℋ ⟶ ℋ |
2 |
|
ho0val |
⊢ ( 𝑦 ∈ ℋ → ( 0hop ‘ 𝑦 ) = 0ℎ ) |
3 |
2
|
oveq2d |
⊢ ( 𝑦 ∈ ℋ → ( 𝑥 ·ih ( 0hop ‘ 𝑦 ) ) = ( 𝑥 ·ih 0ℎ ) ) |
4 |
|
hi02 |
⊢ ( 𝑥 ∈ ℋ → ( 𝑥 ·ih 0ℎ ) = 0 ) |
5 |
3 4
|
sylan9eqr |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 0hop ‘ 𝑦 ) ) = 0 ) |
6 |
|
ho0val |
⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) |
7 |
6
|
oveq1d |
⊢ ( 𝑥 ∈ ℋ → ( ( 0hop ‘ 𝑥 ) ·ih 𝑦 ) = ( 0ℎ ·ih 𝑦 ) ) |
8 |
|
hi01 |
⊢ ( 𝑦 ∈ ℋ → ( 0ℎ ·ih 𝑦 ) = 0 ) |
9 |
7 8
|
sylan9eq |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 0hop ‘ 𝑥 ) ·ih 𝑦 ) = 0 ) |
10 |
5 9
|
eqtr4d |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 0hop ‘ 𝑦 ) ) = ( ( 0hop ‘ 𝑥 ) ·ih 𝑦 ) ) |
11 |
10
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 0hop ‘ 𝑦 ) ) = ( ( 0hop ‘ 𝑥 ) ·ih 𝑦 ) |
12 |
|
elhmop |
⊢ ( 0hop ∈ HrmOp ↔ ( 0hop : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 0hop ‘ 𝑦 ) ) = ( ( 0hop ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
13 |
1 11 12
|
mpbir2an |
⊢ 0hop ∈ HrmOp |