Metamath Proof Explorer


Theorem 0iin

Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005)

Ref Expression
Assertion 0iin 𝑥 ∈ ∅ 𝐴 = V

Proof

Step Hyp Ref Expression
1 df-iin 𝑥 ∈ ∅ 𝐴 = { 𝑦 ∣ ∀ 𝑥 ∈ ∅ 𝑦𝐴 }
2 vex 𝑦 ∈ V
3 ral0 𝑥 ∈ ∅ 𝑦𝐴
4 2 3 2th ( 𝑦 ∈ V ↔ ∀ 𝑥 ∈ ∅ 𝑦𝐴 )
5 4 abbi2i V = { 𝑦 ∣ ∀ 𝑥 ∈ ∅ 𝑦𝐴 }
6 1 5 eqtr4i 𝑥 ∈ ∅ 𝐴 = V