Metamath Proof Explorer
Description: Something cannot be equal to both the null set and the power set of the
null set. (Contributed by NM, 21-Jun-1993)
|
|
Ref |
Expression |
|
Assertion |
0inp0 |
⊢ ( 𝐴 = ∅ → ¬ 𝐴 = { ∅ } ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
0nep0 |
⊢ ∅ ≠ { ∅ } |
2 |
|
neeq1 |
⊢ ( 𝐴 = ∅ → ( 𝐴 ≠ { ∅ } ↔ ∅ ≠ { ∅ } ) ) |
3 |
1 2
|
mpbiri |
⊢ ( 𝐴 = ∅ → 𝐴 ≠ { ∅ } ) |
4 |
3
|
neneqd |
⊢ ( 𝐴 = ∅ → ¬ 𝐴 = { ∅ } ) |