Metamath Proof Explorer
		
		
		
		Description:  Something cannot be equal to both the null set and the power set of the
     null set.  (Contributed by NM, 21-Jun-1993)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | 0inp0 | ⊢  ( 𝐴  =  ∅  →  ¬  𝐴  =  { ∅ } ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0nep0 | ⊢ ∅  ≠  { ∅ } | 
						
							| 2 |  | neeq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  ≠  { ∅ }  ↔  ∅  ≠  { ∅ } ) ) | 
						
							| 3 | 1 2 | mpbiri | ⊢ ( 𝐴  =  ∅  →  𝐴  ≠  { ∅ } ) | 
						
							| 4 | 3 | neneqd | ⊢ ( 𝐴  =  ∅  →  ¬  𝐴  =  { ∅ } ) |