Metamath Proof Explorer


Theorem 0iun

Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion 0iun 𝑥 ∈ ∅ 𝐴 = ∅

Proof

Step Hyp Ref Expression
1 rex0 ¬ ∃ 𝑥 ∈ ∅ 𝑦𝐴
2 eliun ( 𝑦 𝑥 ∈ ∅ 𝐴 ↔ ∃ 𝑥 ∈ ∅ 𝑦𝐴 )
3 1 2 mtbir ¬ 𝑦 𝑥 ∈ ∅ 𝐴
4 3 nel0 𝑥 ∈ ∅ 𝐴 = ∅