| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0lmhm.z | ⊢  0   =  ( 0g ‘ 𝑁 ) | 
						
							| 2 |  | 0lmhm.b | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 3 |  | 0lmhm.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑀 ) | 
						
							| 4 |  | 0lmhm.t | ⊢ 𝑇  =  ( Scalar ‘ 𝑁 ) | 
						
							| 5 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑀 )  =  (  ·𝑠  ‘ 𝑀 ) | 
						
							| 6 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑁 )  =  (  ·𝑠  ‘ 𝑁 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 8 |  | simp1 | ⊢ ( ( 𝑀  ∈  LMod  ∧  𝑁  ∈  LMod  ∧  𝑆  =  𝑇 )  →  𝑀  ∈  LMod ) | 
						
							| 9 |  | simp2 | ⊢ ( ( 𝑀  ∈  LMod  ∧  𝑁  ∈  LMod  ∧  𝑆  =  𝑇 )  →  𝑁  ∈  LMod ) | 
						
							| 10 |  | simp3 | ⊢ ( ( 𝑀  ∈  LMod  ∧  𝑁  ∈  LMod  ∧  𝑆  =  𝑇 )  →  𝑆  =  𝑇 ) | 
						
							| 11 | 10 | eqcomd | ⊢ ( ( 𝑀  ∈  LMod  ∧  𝑁  ∈  LMod  ∧  𝑆  =  𝑇 )  →  𝑇  =  𝑆 ) | 
						
							| 12 |  | lmodgrp | ⊢ ( 𝑀  ∈  LMod  →  𝑀  ∈  Grp ) | 
						
							| 13 |  | lmodgrp | ⊢ ( 𝑁  ∈  LMod  →  𝑁  ∈  Grp ) | 
						
							| 14 | 1 2 | 0ghm | ⊢ ( ( 𝑀  ∈  Grp  ∧  𝑁  ∈  Grp )  →  ( 𝐵  ×  {  0  } )  ∈  ( 𝑀  GrpHom  𝑁 ) ) | 
						
							| 15 | 12 13 14 | syl2an | ⊢ ( ( 𝑀  ∈  LMod  ∧  𝑁  ∈  LMod )  →  ( 𝐵  ×  {  0  } )  ∈  ( 𝑀  GrpHom  𝑁 ) ) | 
						
							| 16 | 15 | 3adant3 | ⊢ ( ( 𝑀  ∈  LMod  ∧  𝑁  ∈  LMod  ∧  𝑆  =  𝑇 )  →  ( 𝐵  ×  {  0  } )  ∈  ( 𝑀  GrpHom  𝑁 ) ) | 
						
							| 17 |  | simpl2 | ⊢ ( ( ( 𝑀  ∈  LMod  ∧  𝑁  ∈  LMod  ∧  𝑆  =  𝑇 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  𝐵 ) )  →  𝑁  ∈  LMod ) | 
						
							| 18 |  | simprl | ⊢ ( ( ( 𝑀  ∈  LMod  ∧  𝑁  ∈  LMod  ∧  𝑆  =  𝑇 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 19 |  | simpl3 | ⊢ ( ( ( 𝑀  ∈  LMod  ∧  𝑁  ∈  LMod  ∧  𝑆  =  𝑇 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  𝐵 ) )  →  𝑆  =  𝑇 ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( ( ( 𝑀  ∈  LMod  ∧  𝑁  ∈  LMod  ∧  𝑆  =  𝑇 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  𝐵 ) )  →  ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑇 ) ) | 
						
							| 21 | 18 20 | eleqtrd | ⊢ ( ( ( 𝑀  ∈  LMod  ∧  𝑁  ∈  LMod  ∧  𝑆  =  𝑇 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  ( Base ‘ 𝑇 ) ) | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ 𝑇 )  =  ( Base ‘ 𝑇 ) | 
						
							| 23 | 4 6 22 1 | lmodvs0 | ⊢ ( ( 𝑁  ∈  LMod  ∧  𝑥  ∈  ( Base ‘ 𝑇 ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑁 )  0  )  =   0  ) | 
						
							| 24 | 17 21 23 | syl2anc | ⊢ ( ( ( 𝑀  ∈  LMod  ∧  𝑁  ∈  LMod  ∧  𝑆  =  𝑇 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑁 )  0  )  =   0  ) | 
						
							| 25 | 1 | fvexi | ⊢  0   ∈  V | 
						
							| 26 | 25 | fvconst2 | ⊢ ( 𝑦  ∈  𝐵  →  ( ( 𝐵  ×  {  0  } ) ‘ 𝑦 )  =   0  ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( 𝑦  ∈  𝐵  →  ( 𝑥 (  ·𝑠  ‘ 𝑁 ) ( ( 𝐵  ×  {  0  } ) ‘ 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑁 )  0  ) ) | 
						
							| 28 | 27 | ad2antll | ⊢ ( ( ( 𝑀  ∈  LMod  ∧  𝑁  ∈  LMod  ∧  𝑆  =  𝑇 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑁 ) ( ( 𝐵  ×  {  0  } ) ‘ 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑁 )  0  ) ) | 
						
							| 29 |  | simpl1 | ⊢ ( ( ( 𝑀  ∈  LMod  ∧  𝑁  ∈  LMod  ∧  𝑆  =  𝑇 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  𝐵 ) )  →  𝑀  ∈  LMod ) | 
						
							| 30 |  | simprr | ⊢ ( ( ( 𝑀  ∈  LMod  ∧  𝑁  ∈  LMod  ∧  𝑆  =  𝑇 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 31 | 2 3 5 7 | lmodvscl | ⊢ ( ( 𝑀  ∈  LMod  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 32 | 29 18 30 31 | syl3anc | ⊢ ( ( ( 𝑀  ∈  LMod  ∧  𝑁  ∈  LMod  ∧  𝑆  =  𝑇 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 33 | 25 | fvconst2 | ⊢ ( ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 )  ∈  𝐵  →  ( ( 𝐵  ×  {  0  } ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 ) )  =   0  ) | 
						
							| 34 | 32 33 | syl | ⊢ ( ( ( 𝑀  ∈  LMod  ∧  𝑁  ∈  LMod  ∧  𝑆  =  𝑇 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝐵  ×  {  0  } ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 ) )  =   0  ) | 
						
							| 35 | 24 28 34 | 3eqtr4rd | ⊢ ( ( ( 𝑀  ∈  LMod  ∧  𝑁  ∈  LMod  ∧  𝑆  =  𝑇 )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝐵  ×  {  0  } ) ‘ ( 𝑥 (  ·𝑠  ‘ 𝑀 ) 𝑦 ) )  =  ( 𝑥 (  ·𝑠  ‘ 𝑁 ) ( ( 𝐵  ×  {  0  } ) ‘ 𝑦 ) ) ) | 
						
							| 36 | 2 5 6 3 4 7 8 9 11 16 35 | islmhmd | ⊢ ( ( 𝑀  ∈  LMod  ∧  𝑁  ∈  LMod  ∧  𝑆  =  𝑇 )  →  ( 𝐵  ×  {  0  } )  ∈  ( 𝑀  LMHom  𝑁 ) ) |