Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
⊢ 0 ∈ ℂ |
2 |
1
|
fconst6 |
⊢ ( ℋ × { 0 } ) : ℋ ⟶ ℂ |
3 |
|
hvmulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) |
4 |
|
hvaddcl |
⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
5 |
3 4
|
sylan |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
6 |
|
c0ex |
⊢ 0 ∈ V |
7 |
6
|
fvconst2 |
⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ → ( ( ℋ × { 0 } ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = 0 ) |
8 |
5 7
|
syl |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( ℋ × { 0 } ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = 0 ) |
9 |
6
|
fvconst2 |
⊢ ( 𝑦 ∈ ℋ → ( ( ℋ × { 0 } ) ‘ 𝑦 ) = 0 ) |
10 |
9
|
oveq2d |
⊢ ( 𝑦 ∈ ℋ → ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) = ( 𝑥 · 0 ) ) |
11 |
|
mul01 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · 0 ) = 0 ) |
12 |
10 11
|
sylan9eqr |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) = 0 ) |
13 |
6
|
fvconst2 |
⊢ ( 𝑧 ∈ ℋ → ( ( ℋ × { 0 } ) ‘ 𝑧 ) = 0 ) |
14 |
12 13
|
oveqan12d |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) + ( ( ℋ × { 0 } ) ‘ 𝑧 ) ) = ( 0 + 0 ) ) |
15 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
16 |
14 15
|
eqtrdi |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) + ( ( ℋ × { 0 } ) ‘ 𝑧 ) ) = 0 ) |
17 |
8 16
|
eqtr4d |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( ℋ × { 0 } ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) + ( ( ℋ × { 0 } ) ‘ 𝑧 ) ) ) |
18 |
17
|
3impa |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( ℋ × { 0 } ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) + ( ( ℋ × { 0 } ) ‘ 𝑧 ) ) ) |
19 |
18
|
rgen3 |
⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( ℋ × { 0 } ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) + ( ( ℋ × { 0 } ) ‘ 𝑧 ) ) |
20 |
|
ellnfn |
⊢ ( ( ℋ × { 0 } ) ∈ LinFn ↔ ( ( ℋ × { 0 } ) : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( ℋ × { 0 } ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) + ( ( ℋ × { 0 } ) ‘ 𝑧 ) ) ) ) |
21 |
2 19 20
|
mpbir2an |
⊢ ( ℋ × { 0 } ) ∈ LinFn |