| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0cn |
⊢ 0 ∈ ℂ |
| 2 |
1
|
fconst6 |
⊢ ( ℋ × { 0 } ) : ℋ ⟶ ℂ |
| 3 |
|
hvmulcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) |
| 4 |
|
hvaddcl |
⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
| 5 |
3 4
|
sylan |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
| 6 |
|
c0ex |
⊢ 0 ∈ V |
| 7 |
6
|
fvconst2 |
⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ → ( ( ℋ × { 0 } ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = 0 ) |
| 8 |
5 7
|
syl |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( ℋ × { 0 } ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = 0 ) |
| 9 |
6
|
fvconst2 |
⊢ ( 𝑦 ∈ ℋ → ( ( ℋ × { 0 } ) ‘ 𝑦 ) = 0 ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝑦 ∈ ℋ → ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) = ( 𝑥 · 0 ) ) |
| 11 |
|
mul01 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · 0 ) = 0 ) |
| 12 |
10 11
|
sylan9eqr |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) = 0 ) |
| 13 |
6
|
fvconst2 |
⊢ ( 𝑧 ∈ ℋ → ( ( ℋ × { 0 } ) ‘ 𝑧 ) = 0 ) |
| 14 |
12 13
|
oveqan12d |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) + ( ( ℋ × { 0 } ) ‘ 𝑧 ) ) = ( 0 + 0 ) ) |
| 15 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 16 |
14 15
|
eqtrdi |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) + ( ( ℋ × { 0 } ) ‘ 𝑧 ) ) = 0 ) |
| 17 |
8 16
|
eqtr4d |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( ℋ × { 0 } ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) + ( ( ℋ × { 0 } ) ‘ 𝑧 ) ) ) |
| 18 |
17
|
3impa |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( ℋ × { 0 } ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) + ( ( ℋ × { 0 } ) ‘ 𝑧 ) ) ) |
| 19 |
18
|
rgen3 |
⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( ℋ × { 0 } ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) + ( ( ℋ × { 0 } ) ‘ 𝑧 ) ) |
| 20 |
|
ellnfn |
⊢ ( ( ℋ × { 0 } ) ∈ LinFn ↔ ( ( ℋ × { 0 } ) : ℋ ⟶ ℂ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( ℋ × { 0 } ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 · ( ( ℋ × { 0 } ) ‘ 𝑦 ) ) + ( ( ℋ × { 0 } ) ‘ 𝑧 ) ) ) ) |
| 21 |
2 19 20
|
mpbir2an |
⊢ ( ℋ × { 0 } ) ∈ LinFn |