Metamath Proof Explorer


Theorem 0lnop

Description: The identically zero function is a linear Hilbert space operator. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion 0lnop 0hop ∈ LinOp

Proof

Step Hyp Ref Expression
1 0hmop 0hop ∈ HrmOp
2 hmoplin ( 0hop ∈ HrmOp → 0hop ∈ LinOp )
3 1 2 ax-mp 0hop ∈ LinOp