Metamath Proof Explorer


Theorem 0lt1

Description: 0 is less than 1. Theorem I.21 of Apostol p. 20. (Contributed by NM, 17-Jan-1997)

Ref Expression
Assertion 0lt1 0 < 1

Proof

Step Hyp Ref Expression
1 1re 1 ∈ ℝ
2 ax-1ne0 1 ≠ 0
3 msqgt0 ( ( 1 ∈ ℝ ∧ 1 ≠ 0 ) → 0 < ( 1 · 1 ) )
4 1 2 3 mp2an 0 < ( 1 · 1 )
5 ax-1cn 1 ∈ ℂ
6 5 mulid1i ( 1 · 1 ) = 1
7 4 6 breqtri 0 < 1