| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ltat.z | ⊢  0   =  ( 0. ‘ 𝐾 ) | 
						
							| 2 |  | 0ltat.s | ⊢  <   =  ( lt ‘ 𝐾 ) | 
						
							| 3 |  | 0ltat.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑃  ∈  𝐴 )  →  𝐾  ∈  OP ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 6 | 5 1 | op0cl | ⊢ ( 𝐾  ∈  OP  →   0   ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑃  ∈  𝐴 )  →   0   ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 8 | 5 3 | atbase | ⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑃  ∈  𝐴 )  →  𝑃  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 10 |  | eqid | ⊢ (  ⋖  ‘ 𝐾 )  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 11 | 1 10 3 | atcvr0 | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑃  ∈  𝐴 )  →   0  (  ⋖  ‘ 𝐾 ) 𝑃 ) | 
						
							| 12 | 5 2 10 | cvrlt | ⊢ ( ( ( 𝐾  ∈  OP  ∧   0   ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 ) )  ∧   0  (  ⋖  ‘ 𝐾 ) 𝑃 )  →   0   <  𝑃 ) | 
						
							| 13 | 4 7 9 11 12 | syl31anc | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑃  ∈  𝐴 )  →   0   <  𝑃 ) |