Metamath Proof Explorer
		
		
		
		Description:  The set of mappings of the empty set to the empty set is the singleton
     containing the empty set.  (Contributed by AV, 31-Mar-2024)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | 0map0sn0 | ⊢  ( ∅  ↑m  ∅ )  =  { ∅ } | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f0bi | ⊢ ( 𝑓 : ∅ ⟶ ∅  ↔  𝑓  =  ∅ ) | 
						
							| 2 | 1 | abbii | ⊢ { 𝑓  ∣  𝑓 : ∅ ⟶ ∅ }  =  { 𝑓  ∣  𝑓  =  ∅ } | 
						
							| 3 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 4 | 3 3 | mapval | ⊢ ( ∅  ↑m  ∅ )  =  { 𝑓  ∣  𝑓 : ∅ ⟶ ∅ } | 
						
							| 5 |  | df-sn | ⊢ { ∅ }  =  { 𝑓  ∣  𝑓  =  ∅ } | 
						
							| 6 | 2 4 5 | 3eqtr4i | ⊢ ( ∅  ↑m  ∅ )  =  { ∅ } |