Metamath Proof Explorer
Description: The set of mappings of the empty set to the empty set is the singleton
containing the empty set. (Contributed by AV, 31-Mar-2024)
|
|
Ref |
Expression |
|
Assertion |
0map0sn0 |
⊢ ( ∅ ↑m ∅ ) = { ∅ } |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
f0bi |
⊢ ( 𝑓 : ∅ ⟶ ∅ ↔ 𝑓 = ∅ ) |
2 |
1
|
abbii |
⊢ { 𝑓 ∣ 𝑓 : ∅ ⟶ ∅ } = { 𝑓 ∣ 𝑓 = ∅ } |
3 |
|
0ex |
⊢ ∅ ∈ V |
4 |
3 3
|
mapval |
⊢ ( ∅ ↑m ∅ ) = { 𝑓 ∣ 𝑓 : ∅ ⟶ ∅ } |
5 |
|
df-sn |
⊢ { ∅ } = { 𝑓 ∣ 𝑓 = ∅ } |
6 |
2 4 5
|
3eqtr4i |
⊢ ( ∅ ↑m ∅ ) = { ∅ } |