Metamath Proof Explorer


Theorem 0mat2pmat

Description: The transformed zero matrix is the zero polynomial matrix. (Contributed by AV, 5-Aug-2019) (Proof shortened by AV, 19-Nov-2019)

Ref Expression
Hypotheses idmatidpmat.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
idmatidpmat.p 𝑃 = ( Poly1𝑅 )
0mat2pmat.0 0 = ( 0g ‘ ( 𝑁 Mat 𝑅 ) )
0mat2pmat.z 𝑍 = ( 0g ‘ ( 𝑁 Mat 𝑃 ) )
Assertion 0mat2pmat ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) → ( 𝑇0 ) = 𝑍 )

Proof

Step Hyp Ref Expression
1 idmatidpmat.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
2 idmatidpmat.p 𝑃 = ( Poly1𝑅 )
3 0mat2pmat.0 0 = ( 0g ‘ ( 𝑁 Mat 𝑅 ) )
4 0mat2pmat.z 𝑍 = ( 0g ‘ ( 𝑁 Mat 𝑃 ) )
5 eqid ( 𝑁 Mat 𝑅 ) = ( 𝑁 Mat 𝑅 )
6 eqid ( Base ‘ ( 𝑁 Mat 𝑅 ) ) = ( Base ‘ ( 𝑁 Mat 𝑅 ) )
7 eqid ( 𝑁 Mat 𝑃 ) = ( 𝑁 Mat 𝑃 )
8 eqid ( Base ‘ ( 𝑁 Mat 𝑃 ) ) = ( Base ‘ ( 𝑁 Mat 𝑃 ) )
9 1 5 6 2 7 8 mat2pmatghm ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( ( 𝑁 Mat 𝑅 ) GrpHom ( 𝑁 Mat 𝑃 ) ) )
10 9 ancoms ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) → 𝑇 ∈ ( ( 𝑁 Mat 𝑅 ) GrpHom ( 𝑁 Mat 𝑃 ) ) )
11 3 4 ghmid ( 𝑇 ∈ ( ( 𝑁 Mat 𝑅 ) GrpHom ( 𝑁 Mat 𝑃 ) ) → ( 𝑇0 ) = 𝑍 )
12 10 11 syl ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) → ( 𝑇0 ) = 𝑍 )