Metamath Proof Explorer


Theorem 0mbl

Description: The empty set is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion 0mbl ∅ ∈ dom vol

Proof

Step Hyp Ref Expression
1 0ss ∅ ⊆ ℝ
2 ovol0 ( vol* ‘ ∅ ) = 0
3 nulmbl ( ( ∅ ⊆ ℝ ∧ ( vol* ‘ ∅ ) = 0 ) → ∅ ∈ dom vol )
4 1 2 3 mp2an ∅ ∈ dom vol