Metamath Proof Explorer


Theorem 0met

Description: The empty metric. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion 0met ∅ ∈ ( Met ‘ ∅ )

Proof

Step Hyp Ref Expression
1 0ex ∅ ∈ V
2 f0 ∅ : ∅ ⟶ ℝ
3 xp0 ( ∅ × ∅ ) = ∅
4 3 feq2i ( ∅ : ( ∅ × ∅ ) ⟶ ℝ ↔ ∅ : ∅ ⟶ ℝ )
5 2 4 mpbir ∅ : ( ∅ × ∅ ) ⟶ ℝ
6 noel ¬ 𝑥 ∈ ∅
7 6 pm2.21i ( 𝑥 ∈ ∅ → ( ( 𝑥𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) )
8 7 adantr ( ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ) → ( ( 𝑥𝑦 ) = 0 ↔ 𝑥 = 𝑦 ) )
9 6 pm2.21i ( 𝑥 ∈ ∅ → ( 𝑥𝑦 ) ≤ ( ( 𝑧𝑥 ) + ( 𝑧𝑦 ) ) )
10 9 3ad2ant1 ( ( 𝑥 ∈ ∅ ∧ 𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅ ) → ( 𝑥𝑦 ) ≤ ( ( 𝑧𝑥 ) + ( 𝑧𝑦 ) ) )
11 1 5 8 10 ismeti ∅ ∈ ( Met ‘ ∅ )