| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0mhm.z | ⊢  0   =  ( 0g ‘ 𝑁 ) | 
						
							| 2 |  | 0mhm.b | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 3 |  | id | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑁  ∈  Mnd )  →  ( 𝑀  ∈  Mnd  ∧  𝑁  ∈  Mnd ) ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑁 )  =  ( Base ‘ 𝑁 ) | 
						
							| 5 | 4 1 | mndidcl | ⊢ ( 𝑁  ∈  Mnd  →   0   ∈  ( Base ‘ 𝑁 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑁  ∈  Mnd )  →   0   ∈  ( Base ‘ 𝑁 ) ) | 
						
							| 7 |  | fconst6g | ⊢ (  0   ∈  ( Base ‘ 𝑁 )  →  ( 𝐵  ×  {  0  } ) : 𝐵 ⟶ ( Base ‘ 𝑁 ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑁  ∈  Mnd )  →  ( 𝐵  ×  {  0  } ) : 𝐵 ⟶ ( Base ‘ 𝑁 ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑁  ∈  Mnd )  →  𝑁  ∈  Mnd ) | 
						
							| 10 |  | eqid | ⊢ ( +g ‘ 𝑁 )  =  ( +g ‘ 𝑁 ) | 
						
							| 11 | 4 10 1 | mndlid | ⊢ ( ( 𝑁  ∈  Mnd  ∧   0   ∈  ( Base ‘ 𝑁 ) )  →  (  0  ( +g ‘ 𝑁 )  0  )  =   0  ) | 
						
							| 12 | 11 | eqcomd | ⊢ ( ( 𝑁  ∈  Mnd  ∧   0   ∈  ( Base ‘ 𝑁 ) )  →   0   =  (  0  ( +g ‘ 𝑁 )  0  ) ) | 
						
							| 13 | 9 5 12 | syl2anc2 | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑁  ∈  Mnd )  →   0   =  (  0  ( +g ‘ 𝑁 )  0  ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑁  ∈  Mnd )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →   0   =  (  0  ( +g ‘ 𝑁 )  0  ) ) | 
						
							| 15 |  | eqid | ⊢ ( +g ‘ 𝑀 )  =  ( +g ‘ 𝑀 ) | 
						
							| 16 | 2 15 | mndcl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 17 | 16 | 3expb | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 18 | 17 | adantlr | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑁  ∈  Mnd )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 19 | 1 | fvexi | ⊢  0   ∈  V | 
						
							| 20 | 19 | fvconst2 | ⊢ ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 )  ∈  𝐵  →  ( ( 𝐵  ×  {  0  } ) ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) )  =   0  ) | 
						
							| 21 | 18 20 | syl | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑁  ∈  Mnd )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝐵  ×  {  0  } ) ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) )  =   0  ) | 
						
							| 22 | 19 | fvconst2 | ⊢ ( 𝑥  ∈  𝐵  →  ( ( 𝐵  ×  {  0  } ) ‘ 𝑥 )  =   0  ) | 
						
							| 23 | 19 | fvconst2 | ⊢ ( 𝑦  ∈  𝐵  →  ( ( 𝐵  ×  {  0  } ) ‘ 𝑦 )  =   0  ) | 
						
							| 24 | 22 23 | oveqan12d | ⊢ ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( ( ( 𝐵  ×  {  0  } ) ‘ 𝑥 ) ( +g ‘ 𝑁 ) ( ( 𝐵  ×  {  0  } ) ‘ 𝑦 ) )  =  (  0  ( +g ‘ 𝑁 )  0  ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑁  ∈  Mnd )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( ( 𝐵  ×  {  0  } ) ‘ 𝑥 ) ( +g ‘ 𝑁 ) ( ( 𝐵  ×  {  0  } ) ‘ 𝑦 ) )  =  (  0  ( +g ‘ 𝑁 )  0  ) ) | 
						
							| 26 | 14 21 25 | 3eqtr4d | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑁  ∈  Mnd )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝐵  ×  {  0  } ) ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) )  =  ( ( ( 𝐵  ×  {  0  } ) ‘ 𝑥 ) ( +g ‘ 𝑁 ) ( ( 𝐵  ×  {  0  } ) ‘ 𝑦 ) ) ) | 
						
							| 27 | 26 | ralrimivva | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑁  ∈  Mnd )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝐵  ×  {  0  } ) ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) )  =  ( ( ( 𝐵  ×  {  0  } ) ‘ 𝑥 ) ( +g ‘ 𝑁 ) ( ( 𝐵  ×  {  0  } ) ‘ 𝑦 ) ) ) | 
						
							| 28 |  | eqid | ⊢ ( 0g ‘ 𝑀 )  =  ( 0g ‘ 𝑀 ) | 
						
							| 29 | 2 28 | mndidcl | ⊢ ( 𝑀  ∈  Mnd  →  ( 0g ‘ 𝑀 )  ∈  𝐵 ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑁  ∈  Mnd )  →  ( 0g ‘ 𝑀 )  ∈  𝐵 ) | 
						
							| 31 | 19 | fvconst2 | ⊢ ( ( 0g ‘ 𝑀 )  ∈  𝐵  →  ( ( 𝐵  ×  {  0  } ) ‘ ( 0g ‘ 𝑀 ) )  =   0  ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑁  ∈  Mnd )  →  ( ( 𝐵  ×  {  0  } ) ‘ ( 0g ‘ 𝑀 ) )  =   0  ) | 
						
							| 33 | 8 27 32 | 3jca | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑁  ∈  Mnd )  →  ( ( 𝐵  ×  {  0  } ) : 𝐵 ⟶ ( Base ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝐵  ×  {  0  } ) ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) )  =  ( ( ( 𝐵  ×  {  0  } ) ‘ 𝑥 ) ( +g ‘ 𝑁 ) ( ( 𝐵  ×  {  0  } ) ‘ 𝑦 ) )  ∧  ( ( 𝐵  ×  {  0  } ) ‘ ( 0g ‘ 𝑀 ) )  =   0  ) ) | 
						
							| 34 | 2 4 15 10 28 1 | ismhm | ⊢ ( ( 𝐵  ×  {  0  } )  ∈  ( 𝑀  MndHom  𝑁 )  ↔  ( ( 𝑀  ∈  Mnd  ∧  𝑁  ∈  Mnd )  ∧  ( ( 𝐵  ×  {  0  } ) : 𝐵 ⟶ ( Base ‘ 𝑁 )  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝐵  ×  {  0  } ) ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) )  =  ( ( ( 𝐵  ×  {  0  } ) ‘ 𝑥 ) ( +g ‘ 𝑁 ) ( ( 𝐵  ×  {  0  } ) ‘ 𝑦 ) )  ∧  ( ( 𝐵  ×  {  0  } ) ‘ ( 0g ‘ 𝑀 ) )  =   0  ) ) ) | 
						
							| 35 | 3 33 34 | sylanbrc | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑁  ∈  Mnd )  →  ( 𝐵  ×  {  0  } )  ∈  ( 𝑀  MndHom  𝑁 ) ) |