Step |
Hyp |
Ref |
Expression |
1 |
|
0re |
⊢ 0 ∈ ℝ |
2 |
|
nnel |
⊢ ( ¬ ( 0 − 𝑁 ) ∉ ℕ0 ↔ ( 0 − 𝑁 ) ∈ ℕ0 ) |
3 |
|
df-neg |
⊢ - 𝑁 = ( 0 − 𝑁 ) |
4 |
3
|
eqcomi |
⊢ ( 0 − 𝑁 ) = - 𝑁 |
5 |
4
|
eleq1i |
⊢ ( ( 0 − 𝑁 ) ∈ ℕ0 ↔ - 𝑁 ∈ ℕ0 ) |
6 |
|
nn0ge0 |
⊢ ( - 𝑁 ∈ ℕ0 → 0 ≤ - 𝑁 ) |
7 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
8 |
7
|
le0neg1d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 0 ↔ 0 ≤ - 𝑁 ) ) |
9 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
10 |
|
0red |
⊢ ( 𝑁 ∈ ℕ → 0 ∈ ℝ ) |
11 |
10 7
|
ltnled |
⊢ ( 𝑁 ∈ ℕ → ( 0 < 𝑁 ↔ ¬ 𝑁 ≤ 0 ) ) |
12 |
|
pm2.21 |
⊢ ( ¬ 𝑁 ≤ 0 → ( 𝑁 ≤ 0 → ¬ 0 ∈ ℝ ) ) |
13 |
11 12
|
syl6bi |
⊢ ( 𝑁 ∈ ℕ → ( 0 < 𝑁 → ( 𝑁 ≤ 0 → ¬ 0 ∈ ℝ ) ) ) |
14 |
9 13
|
mpd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 0 → ¬ 0 ∈ ℝ ) ) |
15 |
8 14
|
sylbird |
⊢ ( 𝑁 ∈ ℕ → ( 0 ≤ - 𝑁 → ¬ 0 ∈ ℝ ) ) |
16 |
6 15
|
syl5 |
⊢ ( 𝑁 ∈ ℕ → ( - 𝑁 ∈ ℕ0 → ¬ 0 ∈ ℝ ) ) |
17 |
5 16
|
syl5bi |
⊢ ( 𝑁 ∈ ℕ → ( ( 0 − 𝑁 ) ∈ ℕ0 → ¬ 0 ∈ ℝ ) ) |
18 |
2 17
|
syl5bi |
⊢ ( 𝑁 ∈ ℕ → ( ¬ ( 0 − 𝑁 ) ∉ ℕ0 → ¬ 0 ∈ ℝ ) ) |
19 |
1 18
|
mt4i |
⊢ ( 𝑁 ∈ ℕ → ( 0 − 𝑁 ) ∉ ℕ0 ) |