| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 2 | 
							
								
							 | 
							nnel | 
							⊢ ( ¬  ( 0  −  𝑁 )  ∉  ℕ0  ↔  ( 0  −  𝑁 )  ∈  ℕ0 )  | 
						
						
							| 3 | 
							
								
							 | 
							df-neg | 
							⊢ - 𝑁  =  ( 0  −  𝑁 )  | 
						
						
							| 4 | 
							
								3
							 | 
							eqcomi | 
							⊢ ( 0  −  𝑁 )  =  - 𝑁  | 
						
						
							| 5 | 
							
								4
							 | 
							eleq1i | 
							⊢ ( ( 0  −  𝑁 )  ∈  ℕ0  ↔  - 𝑁  ∈  ℕ0 )  | 
						
						
							| 6 | 
							
								
							 | 
							nn0ge0 | 
							⊢ ( - 𝑁  ∈  ℕ0  →  0  ≤  - 𝑁 )  | 
						
						
							| 7 | 
							
								
							 | 
							nnre | 
							⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ )  | 
						
						
							| 8 | 
							
								7
							 | 
							le0neg1d | 
							⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  ≤  0  ↔  0  ≤  - 𝑁 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							nngt0 | 
							⊢ ( 𝑁  ∈  ℕ  →  0  <  𝑁 )  | 
						
						
							| 10 | 
							
								
							 | 
							0red | 
							⊢ ( 𝑁  ∈  ℕ  →  0  ∈  ℝ )  | 
						
						
							| 11 | 
							
								10 7
							 | 
							ltnled | 
							⊢ ( 𝑁  ∈  ℕ  →  ( 0  <  𝑁  ↔  ¬  𝑁  ≤  0 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							pm2.21 | 
							⊢ ( ¬  𝑁  ≤  0  →  ( 𝑁  ≤  0  →  ¬  0  ∈  ℝ ) )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							biimtrdi | 
							⊢ ( 𝑁  ∈  ℕ  →  ( 0  <  𝑁  →  ( 𝑁  ≤  0  →  ¬  0  ∈  ℝ ) ) )  | 
						
						
							| 14 | 
							
								9 13
							 | 
							mpd | 
							⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  ≤  0  →  ¬  0  ∈  ℝ ) )  | 
						
						
							| 15 | 
							
								8 14
							 | 
							sylbird | 
							⊢ ( 𝑁  ∈  ℕ  →  ( 0  ≤  - 𝑁  →  ¬  0  ∈  ℝ ) )  | 
						
						
							| 16 | 
							
								6 15
							 | 
							syl5 | 
							⊢ ( 𝑁  ∈  ℕ  →  ( - 𝑁  ∈  ℕ0  →  ¬  0  ∈  ℝ ) )  | 
						
						
							| 17 | 
							
								5 16
							 | 
							biimtrid | 
							⊢ ( 𝑁  ∈  ℕ  →  ( ( 0  −  𝑁 )  ∈  ℕ0  →  ¬  0  ∈  ℝ ) )  | 
						
						
							| 18 | 
							
								2 17
							 | 
							biimtrid | 
							⊢ ( 𝑁  ∈  ℕ  →  ( ¬  ( 0  −  𝑁 )  ∉  ℕ0  →  ¬  0  ∈  ℝ ) )  | 
						
						
							| 19 | 
							
								1 18
							 | 
							mt4i | 
							⊢ ( 𝑁  ∈  ℕ  →  ( 0  −  𝑁 )  ∉  ℕ0 )  |