Description: Special case: 0 modulo a positive real number is 0. (Contributed by Mario Carneiro, 22-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | 0mod | ⊢ ( 𝑁 ∈ ℝ+ → ( 0 mod 𝑁 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | ⊢ 0 ∈ ℝ | |
2 | 1 | jctl | ⊢ ( 𝑁 ∈ ℝ+ → ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ) |
3 | rpgt0 | ⊢ ( 𝑁 ∈ ℝ+ → 0 < 𝑁 ) | |
4 | 0le0 | ⊢ 0 ≤ 0 | |
5 | 3 4 | jctil | ⊢ ( 𝑁 ∈ ℝ+ → ( 0 ≤ 0 ∧ 0 < 𝑁 ) ) |
6 | modid | ⊢ ( ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) ∧ ( 0 ≤ 0 ∧ 0 < 𝑁 ) ) → ( 0 mod 𝑁 ) = 0 ) | |
7 | 2 5 6 | syl2anc | ⊢ ( 𝑁 ∈ ℝ+ → ( 0 mod 𝑁 ) = 0 ) |