Metamath Proof Explorer


Theorem 0nelelxp

Description: A member of a Cartesian product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008)

Ref Expression
Assertion 0nelelxp ( 𝐶 ∈ ( 𝐴 × 𝐵 ) → ¬ ∅ ∈ 𝐶 )

Proof

Step Hyp Ref Expression
1 elxp ( 𝐶 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑥𝑦 ( 𝐶 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐴𝑦𝐵 ) ) )
2 0nelop ¬ ∅ ∈ ⟨ 𝑥 , 𝑦
3 eleq2 ( 𝐶 = ⟨ 𝑥 , 𝑦 ⟩ → ( ∅ ∈ 𝐶 ↔ ∅ ∈ ⟨ 𝑥 , 𝑦 ⟩ ) )
4 2 3 mtbiri ( 𝐶 = ⟨ 𝑥 , 𝑦 ⟩ → ¬ ∅ ∈ 𝐶 )
5 4 adantr ( ( 𝐶 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ¬ ∅ ∈ 𝐶 )
6 5 exlimivv ( ∃ 𝑥𝑦 ( 𝐶 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ¬ ∅ ∈ 𝐶 )
7 1 6 sylbi ( 𝐶 ∈ ( 𝐴 × 𝐵 ) → ¬ ∅ ∈ 𝐶 )