Description: A member of a Cartesian product (ordered pair) doesn't contain the empty set. (Contributed by NM, 15-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0nelelxp | ⊢ ( 𝐶 ∈ ( 𝐴 × 𝐵 ) → ¬ ∅ ∈ 𝐶 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elxp | ⊢ ( 𝐶 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐶 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) | |
| 2 | 0nelop | ⊢ ¬ ∅ ∈ 〈 𝑥 , 𝑦 〉 | |
| 3 | eleq2 | ⊢ ( 𝐶 = 〈 𝑥 , 𝑦 〉 → ( ∅ ∈ 𝐶 ↔ ∅ ∈ 〈 𝑥 , 𝑦 〉 ) ) | |
| 4 | 2 3 | mtbiri | ⊢ ( 𝐶 = 〈 𝑥 , 𝑦 〉 → ¬ ∅ ∈ 𝐶 ) | 
| 5 | 4 | adantr | ⊢ ( ( 𝐶 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ¬ ∅ ∈ 𝐶 ) | 
| 6 | 5 | exlimivv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝐶 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ¬ ∅ ∈ 𝐶 ) | 
| 7 | 1 6 | sylbi | ⊢ ( 𝐶 ∈ ( 𝐴 × 𝐵 ) → ¬ ∅ ∈ 𝐶 ) |