| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfvdm |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → 𝐵 ∈ dom fBas ) |
| 2 |
|
isfbas |
⊢ ( 𝐵 ∈ dom fBas → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ↔ ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝐹 ∈ ( fBas ‘ 𝐵 ) ↔ ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) |
| 4 |
3
|
ibi |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) |
| 5 |
|
simpr2 |
⊢ ( ( 𝐹 ⊆ 𝒫 𝐵 ∧ ( 𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ( 𝐹 ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) → ∅ ∉ 𝐹 ) |
| 6 |
4 5
|
syl |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ∅ ∉ 𝐹 ) |
| 7 |
|
df-nel |
⊢ ( ∅ ∉ 𝐹 ↔ ¬ ∅ ∈ 𝐹 ) |
| 8 |
6 7
|
sylib |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝐵 ) → ¬ ∅ ∈ 𝐹 ) |