Metamath Proof Explorer


Theorem 0nelfz1

Description: 0 is not an element of a finite interval of integers starting at 1. (Contributed by AV, 27-Aug-2020)

Ref Expression
Assertion 0nelfz1 0 ∉ ( 1 ... 𝑁 )

Proof

Step Hyp Ref Expression
1 0lt1 0 < 1
2 0re 0 ∈ ℝ
3 1re 1 ∈ ℝ
4 2 3 ltnlei ( 0 < 1 ↔ ¬ 1 ≤ 0 )
5 1 4 mpbi ¬ 1 ≤ 0
6 5 intnanr ¬ ( 1 ≤ 0 ∧ 0 ≤ 𝑁 )
7 6 intnan ¬ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ ) ∧ ( 1 ≤ 0 ∧ 0 ≤ 𝑁 ) )
8 df-nel ( 0 ∉ ( 1 ... 𝑁 ) ↔ ¬ 0 ∈ ( 1 ... 𝑁 ) )
9 elfz2 ( 0 ∈ ( 1 ... 𝑁 ) ↔ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ ) ∧ ( 1 ≤ 0 ∧ 0 ≤ 𝑁 ) ) )
10 8 9 xchbinx ( 0 ∉ ( 1 ... 𝑁 ) ↔ ¬ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ ) ∧ ( 1 ≤ 0 ∧ 0 ≤ 𝑁 ) ) )
11 7 10 mpbir 0 ∉ ( 1 ... 𝑁 )