Description: 0 is not an element of a finite interval of integers starting at 1. (Contributed by AV, 27-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | 0nelfz1 | ⊢ 0 ∉ ( 1 ... 𝑁 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lt1 | ⊢ 0 < 1 | |
2 | 0re | ⊢ 0 ∈ ℝ | |
3 | 1re | ⊢ 1 ∈ ℝ | |
4 | 2 3 | ltnlei | ⊢ ( 0 < 1 ↔ ¬ 1 ≤ 0 ) |
5 | 1 4 | mpbi | ⊢ ¬ 1 ≤ 0 |
6 | 5 | intnanr | ⊢ ¬ ( 1 ≤ 0 ∧ 0 ≤ 𝑁 ) |
7 | 6 | intnan | ⊢ ¬ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ ) ∧ ( 1 ≤ 0 ∧ 0 ≤ 𝑁 ) ) |
8 | df-nel | ⊢ ( 0 ∉ ( 1 ... 𝑁 ) ↔ ¬ 0 ∈ ( 1 ... 𝑁 ) ) | |
9 | elfz2 | ⊢ ( 0 ∈ ( 1 ... 𝑁 ) ↔ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ ) ∧ ( 1 ≤ 0 ∧ 0 ≤ 𝑁 ) ) ) | |
10 | 8 9 | xchbinx | ⊢ ( 0 ∉ ( 1 ... 𝑁 ) ↔ ¬ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ ) ∧ ( 1 ≤ 0 ∧ 0 ≤ 𝑁 ) ) ) |
11 | 7 10 | mpbir | ⊢ 0 ∉ ( 1 ... 𝑁 ) |