Metamath Proof Explorer


Theorem 0nelopab

Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017) Reduce axiom usage and shorten proof. (Revised by Gino Giotto, 3-Oct-2024)

Ref Expression
Assertion 0nelopab ¬ ∅ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 vex 𝑦 ∈ V
3 1 2 opnzi 𝑥 , 𝑦 ⟩ ≠ ∅
4 3 nesymi ¬ ∅ = ⟨ 𝑥 , 𝑦
5 4 intnanr ¬ ( ∅ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 )
6 5 nex ¬ ∃ 𝑦 ( ∅ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 )
7 6 nex ¬ ∃ 𝑥𝑦 ( ∅ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 )
8 elopab ( ∅ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ ∃ 𝑥𝑦 ( ∅ = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜑 ) )
9 7 8 mtbir ¬ ∅ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }