Description: The empty set is not a member of a Cartesian product. (Contributed by NM, 2-May-1996) (Revised by Mario Carneiro, 26-Apr-2015) (Proof shortened by JJ, 13-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0nelxp | ⊢ ¬ ∅ ∈ ( 𝐴 × 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | 1 2 | opnzi | ⊢ 〈 𝑥 , 𝑦 〉 ≠ ∅ |
| 4 | 3 | nesymi | ⊢ ¬ ∅ = 〈 𝑥 , 𝑦 〉 |
| 5 | 4 | intnanr | ⊢ ¬ ( ∅ = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 6 | 5 | nex | ⊢ ¬ ∃ 𝑦 ( ∅ = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 7 | 6 | nex | ⊢ ¬ ∃ 𝑥 ∃ 𝑦 ( ∅ = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
| 8 | elxp | ⊢ ( ∅ ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ∅ = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) | |
| 9 | 7 8 | mtbir | ⊢ ¬ ∅ ∈ ( 𝐴 × 𝐵 ) |