Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Replacement
Theorems requiring empty set existence
0nep0
Next ⟩
0inp0
Metamath Proof Explorer
Ascii
Structured
Theorem
0nep0
Description:
The empty set and its power set are not equal.
(Contributed by
NM
, 23-Dec-1993)
Ref
Expression
Assertion
0nep0
⊢
∅ ≠ { ∅ }
Proof
Step
Hyp
Ref
Expression
1
0ex
⊢
∅ ∈ V
2
1
snnz
⊢
{ ∅ } ≠ ∅
3
2
necomi
⊢
∅ ≠ { ∅ }