Description: The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0nnei | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ≠ ∅ ) → ¬ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssnei | ⊢ ( ( 𝐽 ∈ Top ∧ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ⊆ ∅ ) | |
| 2 | ss0b | ⊢ ( 𝑆 ⊆ ∅ ↔ 𝑆 = ∅ ) | |
| 3 | 1 2 | sylib | ⊢ ( ( 𝐽 ∈ Top ∧ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 = ∅ ) | 
| 4 | 3 | ex | ⊢ ( 𝐽 ∈ Top → ( ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝑆 = ∅ ) ) | 
| 5 | 4 | necon3ad | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ≠ ∅ → ¬ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) | 
| 6 | 5 | imp | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ≠ ∅ ) → ¬ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |