Metamath Proof Explorer


Theorem 0nnei

Description: The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007)

Ref Expression
Assertion 0nnei ( ( 𝐽 ∈ Top ∧ 𝑆 ≠ ∅ ) → ¬ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 ssnei ( ( 𝐽 ∈ Top ∧ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ⊆ ∅ )
2 ss0b ( 𝑆 ⊆ ∅ ↔ 𝑆 = ∅ )
3 1 2 sylib ( ( 𝐽 ∈ Top ∧ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 = ∅ )
4 3 ex ( 𝐽 ∈ Top → ( ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝑆 = ∅ ) )
5 4 necon3ad ( 𝐽 ∈ Top → ( 𝑆 ≠ ∅ → ¬ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) )
6 5 imp ( ( 𝐽 ∈ Top ∧ 𝑆 ≠ ∅ ) → ¬ ∅ ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) )