Metamath Proof Explorer


Theorem 0nnn

Description: Zero is not a positive integer. (Contributed by NM, 25-Aug-1999) Remove dependency on ax-pre-mulgt0 . (Revised by Steven Nguyen, 30-Jan-2023)

Ref Expression
Assertion 0nnn ¬ 0 ∈ ℕ

Proof

Step Hyp Ref Expression
1 neirr ¬ 0 ≠ 0
2 nnne0 ( 0 ∈ ℕ → 0 ≠ 0 )
3 1 2 mto ¬ 0 ∈ ℕ