Metamath Proof Explorer


Theorem 0nnq

Description: The empty set is not a positive fraction. (Contributed by NM, 24-Aug-1995) (Revised by Mario Carneiro, 27-Apr-2013) (New usage is discouraged.)

Ref Expression
Assertion 0nnq ¬ ∅ ∈ Q

Proof

Step Hyp Ref Expression
1 0nelxp ¬ ∅ ∈ ( N × N )
2 df-nq Q = { 𝑦 ∈ ( N × N ) ∣ ∀ 𝑥 ∈ ( N × N ) ( 𝑦 ~Q 𝑥 → ¬ ( 2nd𝑥 ) <N ( 2nd𝑦 ) ) }
3 2 ssrab3 Q ⊆ ( N × N )
4 3 sseli ( ∅ ∈ Q → ∅ ∈ ( N × N ) )
5 1 4 mto ¬ ∅ ∈ Q