Metamath Proof Explorer


Theorem 0ntop

Description: The empty set is not a topology. (Contributed by FL, 1-Jun-2008)

Ref Expression
Assertion 0ntop ¬ ∅ ∈ Top

Proof

Step Hyp Ref Expression
1 noel ¬ ∅ ∈ ∅
2 0opn ( ∅ ∈ Top → ∅ ∈ ∅ )
3 1 2 mto ¬ ∅ ∈ Top