Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
ssdif0 |
⊢ ( 𝑋 ⊆ 𝑆 ↔ ( 𝑋 ∖ 𝑆 ) = ∅ ) |
3 |
|
eqss |
⊢ ( 𝑆 = 𝑋 ↔ ( 𝑆 ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑆 = 𝑋 → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) |
5 |
1
|
ntrtop |
⊢ ( 𝐽 ∈ Top → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = 𝑋 ) |
6 |
4 5
|
sylan9eqr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 = 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = 𝑋 ) |
7 |
6
|
eqeq1d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 = 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ↔ 𝑋 = ∅ ) ) |
8 |
7
|
biimpd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 = 𝑋 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ → 𝑋 = ∅ ) ) |
9 |
8
|
ex |
⊢ ( 𝐽 ∈ Top → ( 𝑆 = 𝑋 → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ → 𝑋 = ∅ ) ) ) |
10 |
3 9
|
syl5bir |
⊢ ( 𝐽 ∈ Top → ( ( 𝑆 ⊆ 𝑋 ∧ 𝑋 ⊆ 𝑆 ) → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ → 𝑋 = ∅ ) ) ) |
11 |
10
|
expd |
⊢ ( 𝐽 ∈ Top → ( 𝑆 ⊆ 𝑋 → ( 𝑋 ⊆ 𝑆 → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ → 𝑋 = ∅ ) ) ) ) |
12 |
11
|
com34 |
⊢ ( 𝐽 ∈ Top → ( 𝑆 ⊆ 𝑋 → ( ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ → ( 𝑋 ⊆ 𝑆 → 𝑋 = ∅ ) ) ) ) |
13 |
12
|
imp32 |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) ) → ( 𝑋 ⊆ 𝑆 → 𝑋 = ∅ ) ) |
14 |
2 13
|
syl5bir |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) ) → ( ( 𝑋 ∖ 𝑆 ) = ∅ → 𝑋 = ∅ ) ) |
15 |
14
|
necon3d |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) ) → ( 𝑋 ≠ ∅ → ( 𝑋 ∖ 𝑆 ) ≠ ∅ ) ) |
16 |
15
|
imp |
⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) ) ∧ 𝑋 ≠ ∅ ) → ( 𝑋 ∖ 𝑆 ) ≠ ∅ ) |
17 |
16
|
an32s |
⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑆 ⊆ 𝑋 ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) = ∅ ) ) → ( 𝑋 ∖ 𝑆 ) ≠ ∅ ) |