Step |
Hyp |
Ref |
Expression |
1 |
|
0oval.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
0oval.6 |
⊢ 𝑍 = ( 0vec ‘ 𝑊 ) |
3 |
|
0oval.0 |
⊢ 𝑂 = ( 𝑈 0op 𝑊 ) |
4 |
|
fveq2 |
⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = ( BaseSet ‘ 𝑈 ) ) |
5 |
4 1
|
eqtr4di |
⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = 𝑋 ) |
6 |
5
|
xpeq1d |
⊢ ( 𝑢 = 𝑈 → ( ( BaseSet ‘ 𝑢 ) × { ( 0vec ‘ 𝑤 ) } ) = ( 𝑋 × { ( 0vec ‘ 𝑤 ) } ) ) |
7 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( 0vec ‘ 𝑤 ) = ( 0vec ‘ 𝑊 ) ) |
8 |
7 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( 0vec ‘ 𝑤 ) = 𝑍 ) |
9 |
8
|
sneqd |
⊢ ( 𝑤 = 𝑊 → { ( 0vec ‘ 𝑤 ) } = { 𝑍 } ) |
10 |
9
|
xpeq2d |
⊢ ( 𝑤 = 𝑊 → ( 𝑋 × { ( 0vec ‘ 𝑤 ) } ) = ( 𝑋 × { 𝑍 } ) ) |
11 |
|
df-0o |
⊢ 0op = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ ( ( BaseSet ‘ 𝑢 ) × { ( 0vec ‘ 𝑤 ) } ) ) |
12 |
1
|
fvexi |
⊢ 𝑋 ∈ V |
13 |
|
snex |
⊢ { 𝑍 } ∈ V |
14 |
12 13
|
xpex |
⊢ ( 𝑋 × { 𝑍 } ) ∈ V |
15 |
6 10 11 14
|
ovmpo |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑈 0op 𝑊 ) = ( 𝑋 × { 𝑍 } ) ) |
16 |
3 15
|
syl5eq |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝑂 = ( 𝑋 × { 𝑍 } ) ) |