Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
0ov
Next ⟩
ovprc
Metamath Proof Explorer
Ascii
Structured
Theorem
0ov
Description:
Operation value of the empty set.
(Contributed by
AV
, 15-May-2021)
Ref
Expression
Assertion
0ov
⊢
(
𝐴
∅
𝐵
) = ∅
Proof
Step
Hyp
Ref
Expression
1
df-ov
⊢
(
𝐴
∅
𝐵
) = ( ∅ ‘ 〈
𝐴
,
𝐵
〉 )
2
0fv
⊢
( ∅ ‘ 〈
𝐴
,
𝐵
〉 ) = ∅
3
1
2
eqtri
⊢
(
𝐴
∅
𝐵
) = ∅